Abstract
The majority of galaxies with current star formation rates (SFRs), SFRo≥10−3M⊙yr−1, in the Local Cosmological Volume, where observations should be reliable, have the property that their observed SFRo is larger than their average SFR. This is in tension with the evolution of galaxies described by delayed-τ models, according to which the opposite would be expected. The tension is apparent in that local galaxies imply the star formation time-scale τ ≈ 6.7 Gyr, much longer than the 3.5–4.5 Gyr obtained using an empirically determined main sequence at several redshifts. Using models where the SFR is a power law in time of the form ∝(t − t1)η for t1 = 1.8 Gyr (with no stars forming prior to t1) implies that η = 0.18 ± 0.03. This suggested near-constancy of a galaxy’s SFR over time raises non-trivial problems for the evolution and formation time of galaxies, but is broadly consistent with the observed decreasing main sequence with increasing age of the Universe.
Original language | English |
---|---|
Pages (from-to) | 37-43 |
Number of pages | 7 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 497 |
Issue number | 1 |
Early online date | 22 Jul 2020 |
DOIs | |
Publication status | Published - Sept 2020 |
Keywords
- Galaxies: evolution
- Galaxies: formation
- Galaxies: star formation
- Galaxies: stellar content
- Galaxy: evolution
- Galaxy: formation