Clicking for calamari: toothed whales can echolocate squid Loligo pealeii

P. T. Madsen, M. Wilson, M. Johnson, R. T. Hanlon, A. Bocconcelli, N. Aguilar de Soto, P. L. Tyack

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

Squid play an important role in biomass turnover in marine ecosystems and constitute a food source for similar to 90% of all echolocating toothed whale species. Nonetheless, it has been hypothesized that the soft bodies of squid provide echoes too weak to be detected by toothed whale biosonars, and that only the few hard parts of the squid body may generate significant backscatter. We measured the acoustic backscatter from the common squid Loligo pealeii for signals similar to toothed whale echolocation clicks using an energy detector to mimic the mammalian auditory system. We show that the dorsal target strengths of L. pealeii with mantle lengths between 23 and 26 cm fall in the range from -38 to -44 dB, and that the pen, beak and lenses do not contribute significantly to the backscatter. Thus, the muscular mantle and fins of L. pealeii constitute a sufficient sonar target for individual biosonar detection by toothed whales at ranges between 25 and 325 m, depending on squid size, noise levels, click source levels, and orientation of the ensonified squid. While epipelagic squid must be fast and muscular to catch prey and avoid visual predators, it is hypothesized that some deep-water squid may have adopted passive acoustic crypsis, with a body of low muscle mass and low metabolism that will render them less conspicuous to echolocating predators.

Original languageEnglish
Pages (from-to)141-150
Number of pages10
JournalAquatic Biology
Volume1
Issue number2
DOIs
Publication statusPublished - 2007

Fingerprint

Dive into the research topics of 'Clicking for calamari: toothed whales can echolocate squid Loligo pealeii'. Together they form a unique fingerprint.

Cite this