Abstract
Aim: Rapidly expanding manufacture and use of nanomaterials emphasize the requirements for thorough assessment of health outcomes associated with novel applications. Post-translational protein modifications catalyzed by Ca2+-dependent peptidylargininedeiminases have been shown to trigger immune responses including autoantibody generation, a hallmark of immune complexes deposition in rheumatoid arthritis. Therefore, the aim of the study was to assess if nanoparticles are able to promote protein citrullination. Materials & methods: Human A549 and THP-1 cells were exposed to silicon dioxide, carbon black or single-walled carbon nanotubes. C57BL/6 mice were exposed to respirable single-walled carbon nanotubes. Protein citrullination, peptidylargininedeiminases activity and target proteins were evaluated. Results: The studied nanoparticles induced protein citrullination both in cultured human cells and mouse lung tissues. Citrullination occurred via the peptidylargininedeiminase-dependent mechanism. Cytokeratines 7, 8, 18 and plectins were identified as intracellular citrullination targets. Conclusion: Nanoparticle exposure facilitated post-translational citrullination of proteins.
Original language | English |
---|---|
Pages (from-to) | 1181-1195 |
Number of pages | 15 |
Journal | Nanomedicine |
Volume | 7 |
Issue number | 8 |
DOIs | |
Publication status | Published - Aug 2012 |