Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusters

Chengsheng Ni, Gordon James Hedley, Julia Louise Payne, Vladimir Svrcek, Calum McDonald, Lethy Krishnan Jagadamma, Paul Edwards, Robert Martin, Gunisha Jain, Darragh Carolan, Davide Mariotti, Paul Maguire, Ifor David William Samuel, John Thomas Sirr Irvine

Research output: Contribution to journalArticlepeer-review

68 Citations (Scopus)
5 Downloads (Pure)

Abstract

A metal-organic hybrid perovskite (CH3NH3PbI3) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal–organic hybrid materials, a highly orientated film of (CH3NH3)3Bi2I9 with nanometre-sized core clusters of Bi2I93− surrounded by insulating CH3NH3+ was prepared via solution processing. The (CH3NH3)3Bi2I9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.
Original languageEnglish
Article number170
Pages (from-to)1-7
Number of pages7
JournalNature Communications
Volume8
DOIs
Publication statusPublished - 1 Aug 2017

Fingerprint

Dive into the research topics of 'Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusters'. Together they form a unique fingerprint.

Cite this