TY - JOUR
T1 - Characterizing representational learning
T2 - a combined simulation and tutorial on perturbation theory
AU - Kohnle, Antje
AU - Passante, Gina
N1 - We thank the University of St. Andrews for funding the development of simulations.
PY - 2017/11/28
Y1 - 2017/11/28
N2 - Analyzing, constructing and translating between graphical, pictorial and mathematical representations of physics ideas and reasoning flexibly through them ("representational competence'') is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students' spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid- and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic and semantic use of representations.
AB - Analyzing, constructing and translating between graphical, pictorial and mathematical representations of physics ideas and reasoning flexibly through them ("representational competence'') is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students' spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid- and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic and semantic use of representations.
U2 - 10.1103/PhysRevPhysEducRes.13.020131
DO - 10.1103/PhysRevPhysEducRes.13.020131
M3 - Article
SN - 2469-9896
VL - 13
JO - Physical Review Physics Education Research
JF - Physical Review Physics Education Research
IS - 2
M1 - 020131
ER -