Characterization of the gaseous companion κ Andromedae b New Keck and LBTI high-contrast observations

M. Bonnefoy*, T. Currie, G. -D. Marleau, J. E. Schlieder, J. Wisniewski, J. Carson, K. R. Covey, T. Henning, B. Biller, P. Hinz, H. Klahr, A. N. Marsh Boyer, N. Zimmerman, M. Janson, M. McElwain, C. Mordasini, A. Skemer, V. Bailey, D. Defrere, C. ThalmannM. Skrutskie, F. Allard, D. Homeier, M. Tamura, M. Feldt, A. Cumming, C. Grady, W. Brandner, C. Helling, S. Witte, P. Hauschildt, R. Kandori, M. Kuzuhara, M. Fukagawa, J. Kwon, T. Kudo, J. Hashimoto, N. Kusakabe, L. Abe, T. Brandt, S. Egner, O. Guyon, Y. Hayano, M. Hayashi, S. Hayashi, K. Hodapp, M. Ishii, M. Iye, G. Knapp, T. Matsuo, K. Mede, M. Miyama, J. -I. Morino, A. Moro-Martin, T. Nishimura, T. Pyo, E. Serabyn, T. Suenaga, H. Suto, R. Suzuki, T Takahashi, M. Takami, N. Takato, H. Terada, D. Tomono, E. Turner, M. Watanabe, T. Yamada, H. Takami, T. Usuda

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Context. We previously reported the direct detection of a low-mass companion at a projected separation of 55 ± 2 AU around the B9-type star κ  Andromedae. The properties of the system (mass ratio, separation) make it a benchmark for understanding the formation and evolution of gas giant planets and brown dwarfs on wide orbits. Aims. We present new angular differential imaging (ADI) images of the system at 2.146 (Ks), 3.776 (L'), 4.052 (NB_4.05), and 4.78 μm (M') obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more accurate near-infrared photometry of the star with the MIMIR instrument. We aim to determine the near-infrared spectral energy distribution of the companion and use it to characterize the object. Methods. We used analysis methods adapted to ADI to extract the companion flux. We compared the photometry of the object to reference young, and old objects and to a set of seven PHOENIX-based atmospheric models of cool objects accounting for the formation of dust. We used evolutionary models to derive mass estimates considering a wide range of plausible initial conditions. Finally, we used dedicated formation models to discuss the possible origin of the companion. Results. We derive a more accurate J = 15.86 ± 0.21, H = 14.95 ± 0.13, Ks = 14.32 ± 0.09 mag for κ And b. We detect the companion in all our high-contrast observations. We confirm previous contrasts obtained at Ks and L' band. We derive NB_4.05 = 13.0 ± 0.2, and M = 13.3 ± 0.3 mag and estimate log 10(L/L) = −3.76 ± 0.06. Atmospheric models yield Teff = 1900+100-200 K. They do not set any constraint on the surface gravity. "Hot-start" evolutionary models predict masses of 14+25-2 MJup based on the luminosity and temperature estimates, and when considering a conservative age range for the system (30+120-10 Myr), "warm-start" evolutionary tracks constrain the mass to M ≥ 10MJup. Conclusions. The mass of κ Andromedae b mostly falls in the brown-dwarf regime, owing to remaining uncertainties in age and in mass-luminosity models. According to the formation models, disk instability in a primordial disk may account for the position and a wide range of plausible masses of κ And b.

Original languageEnglish
Article numberA111
Number of pages20
JournalAstronomy & Astrophysics
Volume562
DOIs
Publication statusPublished - 14 Feb 2014

Keywords

  • Instrumentation: adaptive optics
  • Techniques: photometric
  • Planetary systems
  • Stars: individual: kappa Andromedae
  • Low-mass stars
  • Extrasolar giant planets
  • Beta-Pictoris B
  • Finding campaign discovery
  • Direct-imaging discovery
  • Stellar kinematic groups
  • Adaptive-optics system
  • Diretly imaged planet
  • Brown dwarf companion
  • Young solar analog

Fingerprint

Dive into the research topics of 'Characterization of the gaseous companion κ Andromedae b New Keck and LBTI high-contrast observations'. Together they form a unique fingerprint.

Cite this