Carbon nanomembranes from aromatic carboxylate precursors

Petr Dementyev, Daniil Naberezhnyi, Michael Westphal, Manfred Buck, Armin Golzhauser

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)
3 Downloads (Pure)

Abstract

Self-assembled monolayers (SAMs) serve as convenient platform for fabricating carbon nanomembranes (CNMs) of extended lateral dimensions. Highly porous CNMs are emerging as interesting materials for membrane technologies as they exhibit selectivity for water permeation and, owing to their reduced dimensionality, promise increased energy efficiency compared to established systems. In the present study terphenylcarboxylate SAMs, prepared on silver underpotential deposited on Au and irradiated by 100 eV electrons, were successfully converted into free-standing CNMs. Infrared and X-ray photoelectron spectroscopy reveal pronounced chemical changes both of the anchoring carboxylate moiety and the aromatic backbone upon electron irradiation. Permeation studies showed high specificity for water as demonstrated by the separation from tetrahydrofuran. Compared to thiols on gold, the standard CNM precursor system, the carboxylic acid based SAM exhibits equivalent characteristics. This suggests that electron-induced carbonization is insensitive to the particular choice of the anchor moiety and, therefore, the choice of precursor molecules can be extended to the versatile class of aromatic carboxylic acids.

Original languageEnglish
Number of pages7
JournalChemPhysChem
VolumeEarly View
Early online date14 Apr 2020
DOIs
Publication statusE-pub ahead of print - 14 Apr 2020

Keywords

  • Amorphous materials
  • Membranes
  • Self-assembly
  • Thin films
  • Vapor permeation

Fingerprint

Dive into the research topics of 'Carbon nanomembranes from aromatic carboxylate precursors'. Together they form a unique fingerprint.

Cite this