Bringing modern machine learning into clinical practice through the use of intuitive visualization and human-computer interaction

Richard Osuala, Jieyi Li, Ognjen Arandelovic

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)

Abstract

The increasing trend of systematic collection of medical data (diagnoses, hospital admission emergencies, blood test results, scans, etc) by healthcare providers offers an unprecedented opportunity for the application of modern data mining, pattern recognition, and machine learning algorithms. The ultimate aim is invariably that of improving outcomes, be it directly or indirectly. Notwithstanding the successes of recent research efforts in this realm, a major obstacle of making the developed models usable by medical professionals (rather than computer scientists or statisticians) remains largely unaddressed. Yet, a mounting amount of evidence shows that the ability to understand and easily use novel technologies is a major factor governing how widely adopted by the target users (doctors, nurses, and patients, amongst others) they are likely to be. In this work we address this technical gap. In particular, we describe a portable, web-based interface that allows healthcare professionals to interact with recently developed machine learning and data driven prognostic algorithms. Our application interfaces a statistical disease progression model and displays its predictions in an intuitive and readily understandable manner. Different types of geometric primitives and their visual properties (such as size or colour) are used to represent abstract quantities such as probability density functions, the rate of change of relative probabilities, and a series of other relevant statistics which the heathcare professional can use to explore patients’ risk factors or provide personalized, evidence and data driven incentivization to the patient.
Original languageEnglish
Article number3
Number of pages11
JournalAugmented Human Research
Volume4
Early online date19 Feb 2019
DOIs
Publication statusPublished - Apr 2019

Keywords

  • Health care
  • Data
  • Visualization
  • Medicine
  • Patient
  • Interaction

Fingerprint

Dive into the research topics of 'Bringing modern machine learning into clinical practice through the use of intuitive visualization and human-computer interaction'. Together they form a unique fingerprint.

Cite this