TY - JOUR
T1 - Biomedical metal–organic framework materials
T2 - perspectives and challenges
AU - Wang, Alec
AU - Walden, Madeline
AU - Ettlinger, Romy
AU - Kiessling, Fabian
AU - Gassensmith, Jeremiah J.
AU - Lammers, Twan
AU - Wuttke, Stefan
AU - Peña, Quim
N1 - The authors gratefully acknowledge financial support from the German Research Foundation (DFG: LA2937/4-1; SH1223/1-1; SFB 1066; GRK/RTG 2735 (project number 331065168)), the German Federal Ministry of Research and Education (BMBF: Gezielter Wirkstofftransport, PP-TNBC, Project No. 16GW0319K) and the European Research Council (ERC: Meta-Targeting (864121)). The financial support from Welch Foundation (AT-1989-20220331) and from the Human Frontier Science Program (HFSP, within the project RGP0047/2022) are also acknowledged. The authors thank the European Union (European Cooperation in Science and Technology) for the COST Action EU4MOFs (CA22147). Figures were created using BioRender.com.
PY - 2023/11/21
Y1 - 2023/11/21
N2 - Metal–organic framework (MOF) materials are gaining significant interest in biomedical research, owing to their high porosity, crystallinity, and structural and compositional diversity. Their versatile hybrid organic/inorganic chemistry endows MOFs with the capacity to retain organic (drug) molecules, metals, and gases, to effectively channel electrons and photons, to survive harsh physiological conditions such as low pH, and even to protect sensitive biomolecules. Extensive preclinical research has been carried out with MOFs to treat several pathologies and, recently, their integration with other biomedical materials such as stents and implants has demonstrated promising performance in regenerative medicine. However, there remains a significant gap between MOF preclinical research and translation into clinically and societally relevant medicinal products. Here, the intrinsic features of MOFs are outlined and their suitability to specific biomedical applications such as detoxification, drug and gas delivery, or as (combination) therapy platforms is discussed. Furthermore, relevant examples of how MOFs have been engineered and evaluated in different medical indications, including cancer, microbial, and inflammatory diseases is described. Finally, the challenges facing their translation into the clinic are critically examined, with the goal of establishing promising research directions and more realistic approaches that can bridge the translational gap of MOFs and MOF‐containing (nano)materials.
AB - Metal–organic framework (MOF) materials are gaining significant interest in biomedical research, owing to their high porosity, crystallinity, and structural and compositional diversity. Their versatile hybrid organic/inorganic chemistry endows MOFs with the capacity to retain organic (drug) molecules, metals, and gases, to effectively channel electrons and photons, to survive harsh physiological conditions such as low pH, and even to protect sensitive biomolecules. Extensive preclinical research has been carried out with MOFs to treat several pathologies and, recently, their integration with other biomedical materials such as stents and implants has demonstrated promising performance in regenerative medicine. However, there remains a significant gap between MOF preclinical research and translation into clinically and societally relevant medicinal products. Here, the intrinsic features of MOFs are outlined and their suitability to specific biomedical applications such as detoxification, drug and gas delivery, or as (combination) therapy platforms is discussed. Furthermore, relevant examples of how MOFs have been engineered and evaluated in different medical indications, including cancer, microbial, and inflammatory diseases is described. Finally, the challenges facing their translation into the clinic are critically examined, with the goal of establishing promising research directions and more realistic approaches that can bridge the translational gap of MOFs and MOF‐containing (nano)materials.
KW - Porous materials
KW - Metallotherapy
KW - Biomedicine
KW - Nanoparticles
KW - Metal–organic frameworks
U2 - 10.1002/adfm.202308589
DO - 10.1002/adfm.202308589
M3 - Review article
SN - 1616-301X
VL - Early View
JO - Advanced Functional Materials
JF - Advanced Functional Materials
M1 - 2308589
ER -