Abstract
When a small pattern graph does not occur inside a larger target graph, we can ask how to find "as much of the pattern as possible" inside the target graph. In general, this is known as the maximum common subgraph problem, which is much more computationally challenging in practice than subgraph isomorphism. We introduce a restricted alternative, where we ask if all but k vertices from the pattern can be found in the target graph. This allows for the development of slightly weakened forms of certain invariants from subgraph isomorphism which are based upon degree and number of paths. We show that when k is small, weakening the invariants still retains much of their effectiveness. We are then able to solve this problem on the standard problem instances used to benchmark subgraph isomorphism algorithms, despite these instances being too large for current maximum common subgraph algorithms to handle. Finally, by iteratively increasing k, we obtain an algorithm which is also competitive for the maximum common subgraph problem.
Original language | English |
---|---|
Title of host publication | Thirty-First AAAI Conference on Artificial Intelligence |
Subtitle of host publication | February 4–9, 2017, San Francisco, California USA |
Place of Publication | Palo Alto |
Publisher | AAAI Press |
Pages | 3907-3914 |
Number of pages | 8 |
Publication status | Published - 13 Feb 2017 |
Event | 31st AAAI Conference on Artificial Intelligence, AAAI 2017 - San Francisco, United States Duration: 4 Feb 2017 → 10 Feb 2017 http://www.aaai.org/Conferences/AAAI/2017/aaai17call.php |
Conference
Conference | 31st AAAI Conference on Artificial Intelligence, AAAI 2017 |
---|---|
Country/Territory | United States |
City | San Francisco |
Period | 4/02/17 → 10/02/17 |
Internet address |