Abstract
Teleost fish scales form distinct growth rings deposited in proportion to somatic growth in length, and are routinely used in fish ageing and growth analyses. Extraction of incremental growth data from scales is labour intensive. We present a fully automated method to retrieve this data from fish scale images using Convolutional Neural Networks (CNNs). Our pipeline of two CNNs automatically detects the centre of the scale and individual growth rings (circuli) along multiple radial transect emanating from the centre. The focus detector was trained on 725 scale images and achieved an average precision of 99%; the circuli detector was trained on 40 678 circuli annotations and achieved an average precision of 95.1%. Circuli detections were made with less confidence in the freshwater zone of the scale image where the growth bands are most narrowly spaced. However, the performance of the circuli detector was similar to that of another human labeller, highlighting the inherent ambiguity of the labelling process. The system predicts the location of scale growth rings rapidly and with high accuracy, enabling the calculation of spacings and thereby growth inferences from salmon scales. The success of our method suggests its potential for expansion to other species.
Original language | English |
---|---|
Article number | bpae056 |
Number of pages | 7 |
Journal | Biology Methods and Protocols |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - 31 Jul 2024 |
Keywords
- Convolutional Neural Network
- Deep learning
- Scale
- Circuli
- Salmon
- Growth