Atmospheric origins of perchlorate on Mars and in the Atacama

D. C. Catling, Mark Claire, K. J. Zahnle, R. C. Quinn, B. C. Clark, M. H. Hecht, S. Kounaves

Research output: Contribution to journalArticlepeer-review

Abstract

Isotopic studies indicate that natural perchlorate is produced on Earth in arid environments by the oxidation of chlorine species through pathways involving ozone or its photochemical products. With this analogy, we propose that the arid environment on Mars may have given rise to perchlorate through the action of atmospheric oxidants. A variety of hypothetical pathways can be proposed including photochemical reactions, electrostatic discharge, and gas-solid reactions. Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we made a preliminary study of the means to produce Atacama perchlorate to help shed light on the origin of Martian perchlorate. We investigated gas phase pathways using a 1-D photochemical model. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. The feasibility of gas phase production for the Atacama provides justification for future investigations of gas phase photochemistry as a possible source for Martian perchlorate.
Original languageEnglish
Article numberE00E11
JournalJournal of Geophysical Research: Planets
Volume115
Issue numberE1
Early online date22 Jan 2010
DOIs
Publication statusPublished - 2010

Keywords

  • Planetary geochemistry
  • Atmospheres

Fingerprint

Dive into the research topics of 'Atmospheric origins of perchlorate on Mars and in the Atacama'. Together they form a unique fingerprint.

Cite this