Atmospheric CO2 over the past 66 million years from marine archives

James W.B. Rae*, Yi Ge Zhang, Xiaoqing Liu, Gavin L. Foster, Heather M. Stoll, Ross D.M. Whiteford

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


Throughout Earth's history, CO2 is thought to have exerted a fundamental control on environmental change. Here we review and revise CO2 reconstructions from boron isotopes in carbonates and carbon isotopes in organic matter over the major climate transition of the past 66 million years. We find close coupling between CO2 and climate throughout the Cenozoic, with peak CO2 levels of ∼1,500 ppm in the Eocene greenhouse, decreasing to ∼550 ppm in the Miocene, and falling further into ice age world of the Plio–Pleistocene. Around two-thirds of Cenozoic CO2 drawdown is explained by an increase in the ratio of alkalinity to dissolved inorganic carbon, likely linked to a change in the balance of weathering to outgassing, with the remaining one-third due to changing ocean temperature and major ion composition. Earth system climate sensitivity is explored and may vary between different time intervals. The Cenozoic CO2 record highlights the truly geological scale of anthropogenic CO2 change: Current CO2 levels were last seen around 3 million years ago, and major cuts in emissions are required to prevent a return to the CO2 levels of the Miocene or Eocene in the coming century.
▪ CO2 reconstructions over the past 66 Myr from boron isotopes and alkenones are reviewed and re-evaluated.
▪ CO2 estimates from the different proxies show close agreement, yielding a consistent picture of the evolution of the ocean-atmosphere CO2 system over the Cenozoic.
▪ CO2 and climate are coupled throughout the past 66 Myr, providing broad constraints on Earth system climate sensitivity.
▪ Twenty-first-century carbon emissions have the potential to return CO2 to levels not seen since the much warmer climates of Earth's distant past.

Original languageEnglish
Pages (from-to)609-641
Number of pages37
JournalAnnual Review of Earth and Planetary Sciences
Early online date23 Mar 2021
Publication statusPublished - 1 May 2021


  • CO2
  • Boron isotopes
  • Alkenones
  • Climate
  • Cenozoic


Dive into the research topics of 'Atmospheric CO2 over the past 66 million years from marine archives'. Together they form a unique fingerprint.

Cite this