Approximate Bayesian computation reveals the importance of repeated measurements for parameterising cell-based models of growing tissues

Jochen Kursawe, Ruth E. Baker, Alexander G. Fletcher

Research output: Contribution to journalArticlepeer-review

Abstract

The growth and dynamics of epithelial tissues govern many morphogenetic processes in embryonic development. A recent quantitative transition in data acquisition, facilitated by advances in genetic and live-imaging techniques, is paving the way for new insights to these processes. Computational models can help us understand and interpret observations, and then make predictions for future experiments that can distinguish between hypothesised mechanisms. Increasingly, cell-based modelling approaches such as vertex models are being used to help understand the mechanics underlying epithelial morphogenesis. These models typically seek to reproduce qualitative phenomena, such as cell sorting or tissue buckling. However, it remains unclear to what extent quantitative data can be used to constrain these models so that they can then be used to make quantitative, experimentally testable predictions. To address this issue, we perform an in silico study to investigate whether vertex model parameters can be inferred from imaging data, and explore methods to quantify the uncertainty of such estimates. Our approach requires the use of summary statistics to estimate parameters. Here, we focus on summary statistics of cellular packing and of laser ablation experiments, as are commonly reported from imaging studies. We find that including data from repeated experiments is necessary to generate reliable parameter estimates that can facilitate quantitative model predictions.
Original languageEnglish
Pages (from-to)66-81
Number of pages16
JournalJournal of Theoretical Biology
Volume443
Early online date31 Jan 2018
DOIs
Publication statusPublished - 14 Apr 2018

Keywords

  • Cell-based models
  • Approximate Bayesian computation
  • Parameter inference
  • Vertex models
  • Drosophila wing imaginal disc

Fingerprint

Dive into the research topics of 'Approximate Bayesian computation reveals the importance of repeated measurements for parameterising cell-based models of growing tissues'. Together they form a unique fingerprint.

Cite this