Abstract
An ultrahigh-temperature (UHT) metapelitic granulite assemblage consisting of garnet(g)–spinel(sp)–orthopyroxene(opx)-sillimanite(sil)–cordierite(cd)–ilmenite(ilm)–biotite(bi)–plagioclase(pl)–quartz(q) occurs within migmatitic paragneiss near Kalasu in the Chinese Altai, NW China. Textural relations, mineral compositions and P-T estimates, indicate three stages of mineral assemblages: (1) pre-peak prograde stage (M1) consisting of a sp–sil-bearing or sp–opx-bearing inclusion assemblage, with low-Al2O3 contents (4–5 wt.%) in orthopyroxene and P-T conditions of ∼7 kbar and ∼890 °C, (2) peak UHT stage (M2) comprising a g–opx–cd-bearing coarse-grained assemblage, with high-Al2O3 contents (8–9 wt.%) in orthopyroxene and peak conditions of ∼8 kbar and ∼970 °C, and (3) post-peak HT stage (M3) containing an oriented opx–bi–sil-bearing assemblage in matrix, with moderate amounts of Al2O3 (6–7 wt.%) in orthopyroxene and P-T conditions of 8–9 kbar and ∼870 °C. The three discrete stages define an anticlockwise P-T path involving initial prograde heating and post-peak near isobaric cooling. Such a near
isobaric cooling anticlockwise P-T path suggests that UHT metamorphism likely occurred in an overall extensional tectonic setting with associated underplating of mantle-derived mafic magma. A SHRIMP zircon U–Pb age of 278 ± 2 Ma obtained from the metapelitic granulite indicates UHT metamorphism in the Altai orogen occurred during the Permian, coeval with spacially associated mantle-derived mafic intrusions (∼280 Ma) and the Tarim mantle plume (∼275 Ma). Thus, the Permian UHT metamorphism of the Chinese Altai is likely associated with underplating and heating of mantle-derived mafic magma as a result of the Tarim mantle plume.
Original language | English |
---|---|
Pages (from-to) | 1-11 |
Number of pages | 11 |
Journal | Journal of Asian Earth Sciences |
Volume | 94 |
Early online date | 10 Aug 2014 |
DOIs | |
Publication status | Published - Nov 2014 |
Keywords
- Ultrahigh-temperature metamorphism
- The Chinese Altai
- P-T path
- U-Pb age
- Mantle plume
- Zircon U-PB
- NW China
- Tectonic evolution
- Central-Asia
- Continental growth
- Northwest China
- Accretionary orogenesis
- Geological implications
- Crustal metamorphism
- Isotopic composition