TY - JOUR
T1 - Anion stabilised hypercloso-hexaalane Al6H6
AU - Bonyhady, Simon J.
AU - Collis, David
AU - Holzmann, Nicole
AU - Edwards, Alison J.
AU - Piltz, Ross O.
AU - Frenking, Gernot
AU - Stasch, Andreas
AU - Jones, Cameron
N1 - The authors gratefully acknowledge financial support from the Australian Research Council (C.J. and A.S.), the U.S. Air Force Asian Office of Aerospace Research and Development (grant FA2386-18-1-0125 to C.J.), Deutsche Forschungsgemeinschaft (FR 641/25-2) (G.F.), and Director, Bragg Institute, ANSTO, 2011 approval of DB 1959 (A.J.E. and C.J.).
PY - 2018/8/6
Y1 - 2018/8/6
N2 - Boron hydride clusters are an extremely diverse compound class, which are of enormous importance to many areas of chemistry. Despite this, stable aluminium hydride analogues of these species have remained staunchly elusive to synthetic chemists. Here we report that reductions of an amidinato-aluminium(III) hydride complex with magnesium(I) dimers lead to unprecedented examples of stable aluminium(I) hydride complexes, [(ArNacnac)Mg]2[Al6H6(Fiso)2] (ArNacnac = [HC(MeCNAr)2]-, Ar = C6H2Me3-2,4,6 Mes; C6H3Et2-2,6 Dep or C6H3Me2-2,6 Xyl; Fiso = [HC(NDip)2]-, Dip = C6H3Pri2-2,6), which crystallographic and computational studies show to possess near neutral, octahedral hypercloso-hexaalane, Al6H6, cluster cores. The electronically delocalised skeletal bonding in these species is compared to that in the classical borane, [B6H6]2-. Thus, the chemistry of classical polyhedral boranes is extended to stable aluminium hydride clusters for the first time.
AB - Boron hydride clusters are an extremely diverse compound class, which are of enormous importance to many areas of chemistry. Despite this, stable aluminium hydride analogues of these species have remained staunchly elusive to synthetic chemists. Here we report that reductions of an amidinato-aluminium(III) hydride complex with magnesium(I) dimers lead to unprecedented examples of stable aluminium(I) hydride complexes, [(ArNacnac)Mg]2[Al6H6(Fiso)2] (ArNacnac = [HC(MeCNAr)2]-, Ar = C6H2Me3-2,4,6 Mes; C6H3Et2-2,6 Dep or C6H3Me2-2,6 Xyl; Fiso = [HC(NDip)2]-, Dip = C6H3Pri2-2,6), which crystallographic and computational studies show to possess near neutral, octahedral hypercloso-hexaalane, Al6H6, cluster cores. The electronically delocalised skeletal bonding in these species is compared to that in the classical borane, [B6H6]2-. Thus, the chemistry of classical polyhedral boranes is extended to stable aluminium hydride clusters for the first time.
U2 - 10.1038/s41467-018-05504-x
DO - 10.1038/s41467-018-05504-x
M3 - Article
SN - 2041-1723
VL - 9
SP - 1
EP - 6
JO - Nature Communications
JF - Nature Communications
M1 - 3079
ER -