Adversarial AI applied to cross-user inter-domain and intra-domain adaptation in human activity recognition using wireless signals

Muhammad Hassan*, Tom Kelsey, Fahrurrozi Rahman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)

Abstract

In recent years, researchers have successfully recognised human activities using commercially available WiFi (Wireless Fidelity) devices. The channel state information (CSI) can be gathered at the access point with the help of a network interface controller (NIC card). These CSI streams are sensitive to human body motions and produce abrupt changes (fluctuations) in their magnitude and phase values when a moving object interacts with a transmitter and receiver pair. This sensing methodology is gaining popularity compared to traditional approaches involving wearable technology, as it is a contactless sensing strategy with no cumbersome sensing equipments fitted on the target with preserved privacy since no personal information of the subject is collected. In previous investigations, internal validation statistics have been promising. However, external validation results have been poor, due to model application to varying subjects with remarkably different environments. To address this problem, we propose an adversarial Artificial Intelligence AI model that learns and utilises domain-invariant features. We analyse model results in terms of suitability for inter-domain and intra-domain alignment techniques, to identify which is better at robustly matching the source to target domain, and hence improve recognition accuracy in cross-user conditions for HAR using wireless signals. We evaluate our model performance on different target training data percentages to assess model reliability on data scarcity. After extensive evaluation, our architecture shows improved predictive performance across target training data proportions when compared to a non-adversarial model for nine cross-user conditions with comparatively less simulation time. We conclude that inter-domain alignment is preferable for HAR applications using wireless signals, and confirm that the dataset used is suitable for investigations of this type. Our architecture can form the basis of future studies using other datasets and/or investigating combined cross-environmental and cross-user features.
Original languageEnglish
JournalPLoS ONE
Volume19
Issue number4
DOIs
Publication statusPublished - 18 Apr 2024

Fingerprint

Dive into the research topics of 'Adversarial AI applied to cross-user inter-domain and intra-domain adaptation in human activity recognition using wireless signals'. Together they form a unique fingerprint.

Cite this