Adaptive response of a new radioresistant strain of Chlamydomonas reinhardtii and correlation with increased DNA double-strand break rejoining.

S G Chankova, J A Matos, F Simoes, Peter Edward Bryant

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


In order to study the relationship between radioresistance and the adaptive response, we aimed to produce a new strain of Chlamydomonas reinhardtii with characteristics of high radioresistance coupled with a protoplast structure typical for the genus, and the cell-wall-less phenotype to facilitate rapid cell lysis in DNA double-strand break (DSB) assays. The adaptive response of the new strain was investigated using clonogenic and DSB assays. Strain H-3 was derived by mating a radioresistant strain (AK-9-9) with the cell-wall-less mutant CW15 strain and selecting for radioresistance by clonogenic assay. The random amplification of polymorphic DNA (RAPD) molecular marker system was used to evaluate genetic polymorphisms between H-3 and other related C. reinhardtii strains. DSB were estimated using constant-field electrophoresis. Of several mutant strains tested, strain H-3 was shown to be most radioresistant on the basis of dose to give a 90% lethality (LD90) rate and dose to give a 99% lethality rate (LD99). In addition to its high radioresistance and thinner cell wall as compared with that of the other parental strain AK-9-9, H-3 also expressed a radiation-induced adaptive response measured by clonal survival when given a priming dose before a test dose. DSB were also rejoined more rapidly in cells exposed to a priming dose 4 h previously. It is concluded from split-dose experiments that the already highly radioresistant strain H-3 is further capable of 'over recovery' or adaptation to radiation exposure. Accelerated DSB rejoining in cells given a priming dose may underlie the cellular adaptive response in this organism.

Original languageEnglish
Pages (from-to)509-514
Number of pages6
JournalInternational Journal of Radiation Biology
Publication statusPublished - Jul 2005


  • Chlamydomonas reinhardtii
  • radioresistance
  • adaptive response
  • random amplification of polymorphic DNA
  • molecular markers
  • genetic polymorphism
  • constant-field electrophoresis
  • double-strand breaks
  • UV


Dive into the research topics of 'Adaptive response of a new radioresistant strain of Chlamydomonas reinhardtii and correlation with increased DNA double-strand break rejoining.'. Together they form a unique fingerprint.

Cite this