Acoustic phonon sideband dynamics during polaron formation in a single quantum dot

Daniel Wigger, Vage Karakhanyan, Christian Schneider, Martin Kamp, Sven Höfling, Paweł Machnikowski, Tilmann Kuhn, Jacek Kasprzak

Research output: Contribution to journalArticlepeer-review

Abstract

When an electron–hole pair is optically excited in a semiconductor quantum dot, the host crystal lattice adapts to the presence of the generated charge distribution. Therefore, the coupled exciton–phonon system has to establish a new equilibrium, which is reached in the form of a quasiparticle called a polaron. Especially, when the exciton is abruptly generated on a timescale faster than the typical lattice dynamics, the lattice cannot follow adiabatically. Consequently, rich dynamics on the picosecond timescale of the coupled system is expected. In this study, we combine simulations and measurements of the ultrafast, coherent, nonlinear optical response, obtained by four-wave mixing (FWM) spectroscopy, to resolve the formation of this polaron. By detecting and investigating the phonon sidebands in the FWM spectra for varying pulse delays and different temperatures, we have access to the influence of phonon emission and absorption processes, which finally result in the emission of an acoustic wave packet.
Original languageEnglish
Pages (from-to)919-922
JournalOptics Letters
Volume45
Issue number4
DOIs
Publication statusPublished - 10 Feb 2020

Fingerprint

Dive into the research topics of 'Acoustic phonon sideband dynamics during polaron formation in a single quantum dot'. Together they form a unique fingerprint.

Cite this