Accurate and efficient prediction of photonic crystal waveguide bandstructures using neural networks

Caspar Schwahn, Sebastian A. Schulz*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
4 Downloads (Pure)

Abstract

We demonstrate the use of neural networks to predict the optical properties of photonic crystal waveguides (PhCWs) with high accuracy and significantly faster computation times compared to traditional simulation methods. Using 100,000 PhCW designs and their simulated bandstructures, we trained a neural network to achieve a test set relative error of 0.103% in predicting gap guided bands. We use pre-training to improve neural network performance, and numerical differentiation to accurately predict group index curves. Our approach allows for rapid, application-specific tailoring of PhCWs with a runtime of sub-milliseconds per design, a significant improvement over conventional simulation techniques.
Original languageEnglish
Article number485342
Pages (from-to)1479-1489
Number of pages11
JournalOSA Continuum
Volume2
Issue number6
DOIs
Publication statusPublished - 14 Jun 2023

Fingerprint

Dive into the research topics of 'Accurate and efficient prediction of photonic crystal waveguide bandstructures using neural networks'. Together they form a unique fingerprint.

Cite this