Abstract
Objective: We performed a systematic review of the accuracy of patient self-report of stroke to inform approaches to ascertaining and confirming stroke cases in large prospective studies. Methods: We sought studies comparing patient self-report against a reference standard for stroke. We extracted data on survey method(s), response rates, participant characteristics, the reference standard used, and the positive predictive value (PPV) of self-report. Where possible we also calculated sensitivity, specificity, negative predictive value (NPV), and stroke prevalence. Study-level risk of bias was assessed using the Quality Assessment of Diagnostic Studies tool (QUADAS-2). Results: From >1500 identified articles, we included 17 studies. Most asked patients to report a lifetime history of stroke but a few limited recall time to ≤5 years. Some included questions for transient ischaemic attack (TIA) or stroke synonyms. No study was free of risk of bias in the QUADAS-2 assessment, the most frequent causes of bias being incomplete reference standard data, absence of blinding of adjudicators to self-report status, and participant response rates (<80%). PPV of self-report ranged from 22-87% (17 studies), sensitivity from 36-98% (10 studies), specificity from 96-99.6% (10 studies), and NPV from 88.2-99.9% (10 studies). PPV increased with stroke prevalence as expected. Among six studies with available relevant data, if confirmed TIAs were considered to be true rather than false positive strokes, PPV of self-report was >75% in all but one study. It was not possible to assess the influence of recall time or of the question(s) asked on PPV or sensitivity. Conclusions: Characteristics of the study population strongly influence self-report accuracy. In population-based studies with low stroke prevalence, a large proportion of self-reported strokes may be false positives. Self-report is therefore unlikely to be helpful for identifying cases without subsequent confirmation, but may be useful for case ascertainment in combination with other data sources.
Original language | English |
---|---|
Article number | e0137538 |
Journal | PLoS ONE |
Volume | 10 |
Issue number | 9 |
DOIs | |
Publication status | Published - 10 Sept 2015 |