Projects per year
Abstract
Let 𝔄 be a finite abelian group. In this article, we classify harmonic 𝔄-covers of a tropical curve Γ (which allow dilation along edges and at vertices) in terms of the cohomology group of a suitably defined sheaf on Γ. We give a realizability criterion for harmonic 𝔄-covers by patching local monodromy data in an extended homology group on Γ. As an explicit example, we work out the case 𝔄=ℤ/pℤ and explain how realizability for such covers is related to the nowhere-zero flow problem from graph theory.
Original language | English |
---|---|
Pages (from-to) | 395 - 416 |
Number of pages | 22 |
Journal | Mathematical Proceedings of the Cambridge Philosophical Society |
Volume | 176 |
Issue number | 2 |
Early online date | 10 Oct 2023 |
DOIs | |
Publication status | Published - Mar 2024 |
Keywords
- Coverings
- Fundamental group
Fingerprint
Dive into the research topics of 'Abelian tropical covers'. Together they form a unique fingerprint.Projects
- 1 Active
-
Tropical Geometry and the moduli space o: Tropical Geometry and the moduli space of Prym varieties
Len, Y. (PI)
1/05/23 → 31/10/25
Project: Standard
Research output
- 1 Preprint
-
Abelian tropical covers
Len, Y., Ulirsch, M. & Zakharov, D., 2019, (Submitted) arXiv, p. 45.Research output: Working paper › Preprint