Abstract
Pyroptosis is an inflammatory mode of cell death that can contribute to the cytokine storm associated with severe cases of coronavirus disease 2019 (COVID-19). The formation of the NLRP3 inflammasome is central to pyroptosis, which may be induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Inflammasome formation, and by extension pyroptosis, may be inhibited by certain anti-inflammatory drugs. In this study, we present a single-cell mathematical model that captures the formation of the NLRP3 inflammasome, pyroptotic cell death and responses to anti-inflammatory intervention that hinder the formation of the NLRP3 inflammasome. The model is formulated in terms of a system of ordinary differential equations (ODEs) that describe the dynamics of the key biological components involved in pyroptosis. Our results demonstrate that an anti-inflammatory drug can delay the formation of the NLRP3 inflammasome, and thus may alter the mode of cell death from inflammatory (pyroptosis) to non-inflammatory (e.g., apoptosis). The single-cell model is implemented within a SARS-CoV-2 tissue simulator, in collaboration with a multidisciplinary coalition investigating within host-dynamics of COVID-19. In this paper, we additionally provide an overview of the SARS-CoV-2 tissue simulator and highlight the effects of pyroptosis on a cellular level.
Original language | English |
---|---|
Pages (from-to) | 6050-6086 |
Number of pages | 37 |
Journal | AIMS Mathematics |
Volume | 6 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Apr 2021 |
Keywords
- Pyroptosis
- COVID-19
- NLRP3 inflammasome
- Cytokine storm
- Mathematical modelling