Abstract
Most capture-recapture studies are inherently spatial in nature, with capture probabilities depending on the location of traps relative to animals. The spatial component of the studies has until recently, however, not been incorporated in statistical capture-recapture models. This paper reviews capture-recapture models that do include an explicit spatial component. This is done in a non-technical way, omitting much of the algebraic detail and focussing on the model formulation rather than on the estimation methods (which include inverse prediction, maximum likelihood and Bayesian methods). One can view spatially explicit capture-recapture (SECR) models as an endpoint of a series of spatial sampling models, starting with circular plot survey models and moving through conventional distance sampling models, with and without measurement errors, through mark-recapture distance sampling (MRDS) models. This paper attempts a synthesis of these models in what I hope is a style accessible to non-specialists, placing SECR models in the context of other spatial sampling models.
Original language | English |
---|---|
Pages (from-to) | S435-S444 |
Number of pages | 10 |
Journal | Journal of Ornithology |
Volume | 152 |
Issue number | 2 |
Early online date | 2 Oct 2010 |
DOIs | |
Publication status | Published - Feb 2012 |
Keywords
- Spatially explicit capture-recapture
- Spatial sampling
- Measurement error
- Capture function
- Plot sampling
- Distance sampling