TY - JOUR
T1 - A non-invasive microwave method for assessing solid-state ammonia storage
AU - Hartley, Jon
AU - Porch, Adrian
AU - Jones, Martin
PY - 2015
Y1 - 2015
N2 - A 2.45 GHz microwave cavity resonator is used to measure the change in dielectric properties of alkali halide salts (such as CaI2) when exposed to ammonia gas. This technique is based on the change in electric dipole moment of the material that occurs as a function of ammonia content, and so can be used to determine ammonia concentration in solids in a non-invasive way. When a powdered sample is placed in the electric field of the TM010 mode of a resonant cylindrical cavity, we find that ammonia absorption gives a first order change in material polarisation (i.e. real permittivity), related to the ammonia sequestered within the solid. The associated dielectric losses (i.e. imaginary permittivity) exhibit second order transitions, which we believe are due to order-disorder transitions between the different coordination complexes of the halide salt.
AB - A 2.45 GHz microwave cavity resonator is used to measure the change in dielectric properties of alkali halide salts (such as CaI2) when exposed to ammonia gas. This technique is based on the change in electric dipole moment of the material that occurs as a function of ammonia content, and so can be used to determine ammonia concentration in solids in a non-invasive way. When a powdered sample is placed in the electric field of the TM010 mode of a resonant cylindrical cavity, we find that ammonia absorption gives a first order change in material polarisation (i.e. real permittivity), related to the ammonia sequestered within the solid. The associated dielectric losses (i.e. imaginary permittivity) exhibit second order transitions, which we believe are due to order-disorder transitions between the different coordination complexes of the halide salt.
KW - Alkali halide materials
KW - Ammonia storage
KW - Microwave characterisation
UR - http://www.scopus.com/inward/record.url?scp=84921942812&partnerID=8YFLogxK
U2 - 10.1016/j.snb.2014.12.088
DO - 10.1016/j.snb.2014.12.088
M3 - Article
AN - SCOPUS:84921942812
SN - 0925-4005
VL - 210
SP - 726
EP - 730
JO - Sensors and Actuators B: Chemical
JF - Sensors and Actuators B: Chemical
ER -