Projects per year
Abstract
Cancer is a complex disease that starts with mutations of key genes in one cell or a small group of cells at a primary site in the body. If these cancer cells continue to grow successfully and, at some later stage, invade the surrounding tissue and acquire a vascular network, they can spread to distant secondary sites in the body. This process, known as metastatic spread, is responsible for around 90% of deaths from cancer and is one of the so-called hallmarks of cancer. To shed light on the metastatic process, we present a mathematical modelling framework that captures for the first time the interconnected processes of invasion and metastatic spread of individual cancer cells in a spatially explicit manner—a multigrid, hybrid, individual-based approach. This framework accounts for the spatiotemporal evolution of mesenchymal- and epithelial-like cancer cells, membrane-type-1 matrix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase-2 (MMP-2), and for their interactions with the extracellular matrix. Using computational simulations, we demonstrate that our model captures all the key steps of the invasion-metastasis cascade, i.e. invasion by both heterogeneous cancer cell clusters and by single mesenchymal-like cancer cells; intravasation of these clusters and single cells both via active mechanisms mediated by matrix-degrading enzymes (MDEs) and via passive shedding; circulation of cancer cell clusters and single cancer cells in the vasculature with the associated risk of cell death and disaggregation of clusters; extravasation of clusters and single cells; and metastatic growth at distant secondary sites in the body. By faithfully reproducing experimental results, our simulations support the evidence-based hypothesis that the membrane-bound MT1-MMP is the main driver of invasive spread rather than diffusible MDEs such as MMP-2.
Original language | English |
---|---|
Pages (from-to) | 1965-2010 |
Number of pages | 46 |
Journal | Bulletin of Mathematical Biology |
Volume | 81 |
Issue number | 6 |
Early online date | 22 Mar 2019 |
DOIs | |
Publication status | Published - Jun 2019 |
Keywords
- Metastatic spread
- Mathematical oncology
- Tumour microenvironment
- Individual-based model
- Multigrid framework
Fingerprint
Dive into the research topics of 'A mathematical framework for modelling the metastatic spread of cancer'. Together they form a unique fingerprint.Projects
- 1 Finished
-
EPSRC Centre - Multiscale Soft Tissue: EPSRC Centre for Multiscale soft tissue mechanics with application to heart & cancer
Chaplain, M. A. J. (PI)
1/04/16 → 31/03/20
Project: Standard
Profiles
-
Mark Andrew Joseph Chaplain
- Applied Mathematics - Gregory Chair of Applied Mathematics
Person: Academic