TY - JOUR
T1 - A hybrid discrete-continuum mathematical model of pattern prediction in the developing retinal vasculature
AU - McDougall, S. R.
AU - Watson, M. G.
AU - Devlin, A. H.
AU - Mitchell, C. A.
AU - Chaplain, M. A. J.
PY - 2012
Y1 - 2012
N2 - Pathological angiogenesis has been extensively explored by the mathematical modelling community over the past few decades, specifically in the contexts of tumour-induced vascularisation and wound healing. However, there have been relatively few attempts to model angiogenesis associated with normal development, despite the availability of animal models with experimentally accessible and highly ordered vascular topologies: for example, growth and development of the vascular plexus layers in the murine retina. The current study aims to address this issue through the development of a hybrid discrete-continuum mathematical model of the developing retinal vasculature in neonatal mice that is closely coupled with an ongoing experimental programme. The model of the functional vasculature is informed by a range of morphological and molecular data obtained over a period of several days, from 6 days prior to birth to approximately 8 days after birth. The spatio-temporal formation of the superficial retinal vascular plexus (RVP) in wild-type mice occurs in a well-defined sequence. Prior to birth, astrocytes migrate from the optic nerve over the surface of the inner retina in response to a chemotactic gradient of PDGF-A, formed at an earlier stage by migrating retinal ganglion cells (RGCs). Astrocytes express a variety of chemotactic and haptotactic proteins, including VEGF and fibronectin (respectively), which subsequently induce endothelial cell sprouting and modulate growth of the RVP. The developing RVP is not an inert structure; however, the vascular bed adapts and remodels in response to a wide variety of metabolic and biomolecular stimuli. The main focus of this investigation is to understand how these interacting cellular, molecular, and metabolic cues regulate RVP growth and formation. In an earlier one-dimensional continuum model of astrocyte and endothelial migration, we showed that the measured frontal velocities of the two cell types could be accurately reproduced by means of a system of five coupled partial differential equations (Aubert et al. in Bull. Math. Biol. 73:2430-2451, 2011). However, this approach was unable to generate spatial information and structural detail for the entire retinal surface. Building upon this earlier work, a more realistic two-dimensional hybrid PDE-discrete model is derived here that tracks the migration of individual astrocytes and endothelial tip cells towards the outer retinal boundary. Blood perfusion is included throughout plexus development and the emergent retinal architectures adapt and remodel in response to various biological factors. The resulting in silico RVP structures are compared with whole-mounted retinal vasculatures at various stages of development, and the agreement is found to be excellent. Having successfully benchmarked the model against wild-type data, the effect of transgenic over-expression of various genes is predicted, based on the ocular-specific expression of VEGF-A during murine development. These results can be used to help inform future experimental investigations of signalling pathways in ocular conditions characterised by aberrant angiogenesis. © 2012 Society for Mathematical Biology.
AB - Pathological angiogenesis has been extensively explored by the mathematical modelling community over the past few decades, specifically in the contexts of tumour-induced vascularisation and wound healing. However, there have been relatively few attempts to model angiogenesis associated with normal development, despite the availability of animal models with experimentally accessible and highly ordered vascular topologies: for example, growth and development of the vascular plexus layers in the murine retina. The current study aims to address this issue through the development of a hybrid discrete-continuum mathematical model of the developing retinal vasculature in neonatal mice that is closely coupled with an ongoing experimental programme. The model of the functional vasculature is informed by a range of morphological and molecular data obtained over a period of several days, from 6 days prior to birth to approximately 8 days after birth. The spatio-temporal formation of the superficial retinal vascular plexus (RVP) in wild-type mice occurs in a well-defined sequence. Prior to birth, astrocytes migrate from the optic nerve over the surface of the inner retina in response to a chemotactic gradient of PDGF-A, formed at an earlier stage by migrating retinal ganglion cells (RGCs). Astrocytes express a variety of chemotactic and haptotactic proteins, including VEGF and fibronectin (respectively), which subsequently induce endothelial cell sprouting and modulate growth of the RVP. The developing RVP is not an inert structure; however, the vascular bed adapts and remodels in response to a wide variety of metabolic and biomolecular stimuli. The main focus of this investigation is to understand how these interacting cellular, molecular, and metabolic cues regulate RVP growth and formation. In an earlier one-dimensional continuum model of astrocyte and endothelial migration, we showed that the measured frontal velocities of the two cell types could be accurately reproduced by means of a system of five coupled partial differential equations (Aubert et al. in Bull. Math. Biol. 73:2430-2451, 2011). However, this approach was unable to generate spatial information and structural detail for the entire retinal surface. Building upon this earlier work, a more realistic two-dimensional hybrid PDE-discrete model is derived here that tracks the migration of individual astrocytes and endothelial tip cells towards the outer retinal boundary. Blood perfusion is included throughout plexus development and the emergent retinal architectures adapt and remodel in response to various biological factors. The resulting in silico RVP structures are compared with whole-mounted retinal vasculatures at various stages of development, and the agreement is found to be excellent. Having successfully benchmarked the model against wild-type data, the effect of transgenic over-expression of various genes is predicted, based on the ocular-specific expression of VEGF-A during murine development. These results can be used to help inform future experimental investigations of signalling pathways in ocular conditions characterised by aberrant angiogenesis. © 2012 Society for Mathematical Biology.
UR - http://www.scopus.com/inward/record.url?scp=84864334646&partnerID=8YFLogxK
U2 - 10.1007/s11538-012-9754-9
DO - 10.1007/s11538-012-9754-9
M3 - Article
SN - 0092-8240
SP - 1
EP - 43
JO - Bulletin of Mathematical Biology
JF - Bulletin of Mathematical Biology
ER -