TY - JOUR

T1 - A general theory for two-dimensional vortex interactions

AU - Dritschel, David G.

PY - 1995/1/1

Y1 - 1995/1/1

N2 - A general theory for two-dimensional vortex interactions is developed from the observation that, under slowly changing external influences, an individual vortex evolves through a series of equilibrium states until such a state proves unstable. Once an unstable equilibrium state is reached, a relatively fast unsteady evolution ensues, typically involving another nearby vortex. During this fast unsteady evolution, a fraction of the original coherent circulation is lost to filamentary debris, and, remarkably, the flow reorganizes into a set of quasi-steady stable vortices. The simplifying feature of the proposed theory is its use of adiabatic steadiness and marginal stability to determine the shapes and separation distance of vortices on the brink of an inelastic interaction. As a result, the parameter space for the inelastic interaction of nearby vortices is greatly reduced. In the case of two vortex patches, which is the focus of the present work, inelastic interactions depend only on a single parameter: the area ratio of the two vortices (taking the vorticity magnitude inside each to be equal). Without invoking adiabatic steadiness and marginal stability, one would have to contend with the additional parameters of vortex separation and shape, and the latter is actually an infinitude of parameters.

AB - A general theory for two-dimensional vortex interactions is developed from the observation that, under slowly changing external influences, an individual vortex evolves through a series of equilibrium states until such a state proves unstable. Once an unstable equilibrium state is reached, a relatively fast unsteady evolution ensues, typically involving another nearby vortex. During this fast unsteady evolution, a fraction of the original coherent circulation is lost to filamentary debris, and, remarkably, the flow reorganizes into a set of quasi-steady stable vortices. The simplifying feature of the proposed theory is its use of adiabatic steadiness and marginal stability to determine the shapes and separation distance of vortices on the brink of an inelastic interaction. As a result, the parameter space for the inelastic interaction of nearby vortices is greatly reduced. In the case of two vortex patches, which is the focus of the present work, inelastic interactions depend only on a single parameter: the area ratio of the two vortices (taking the vorticity magnitude inside each to be equal). Without invoking adiabatic steadiness and marginal stability, one would have to contend with the additional parameters of vortex separation and shape, and the latter is actually an infinitude of parameters.

UR - http://www.scopus.com/inward/record.url?scp=0029322688&partnerID=8YFLogxK

U2 - 10.1017/S0022112095001716

DO - 10.1017/S0022112095001716

M3 - Article

AN - SCOPUS:0029322688

SN - 0022-1120

VL - 293

SP - 269

EP - 303

JO - Journal of Fluid Mechanics

JF - Journal of Fluid Mechanics

ER -