TY - JOUR
T1 - A general theory for two-dimensional vortex interactions
AU - Dritschel, David G.
PY - 1995/1/1
Y1 - 1995/1/1
N2 - A general theory for two-dimensional vortex interactions is developed from the observation that, under slowly changing external influences, an individual vortex evolves through a series of equilibrium states until such a state proves unstable. Once an unstable equilibrium state is reached, a relatively fast unsteady evolution ensues, typically involving another nearby vortex. During this fast unsteady evolution, a fraction of the original coherent circulation is lost to filamentary debris, and, remarkably, the flow reorganizes into a set of quasi-steady stable vortices. The simplifying feature of the proposed theory is its use of adiabatic steadiness and marginal stability to determine the shapes and separation distance of vortices on the brink of an inelastic interaction. As a result, the parameter space for the inelastic interaction of nearby vortices is greatly reduced. In the case of two vortex patches, which is the focus of the present work, inelastic interactions depend only on a single parameter: the area ratio of the two vortices (taking the vorticity magnitude inside each to be equal). Without invoking adiabatic steadiness and marginal stability, one would have to contend with the additional parameters of vortex separation and shape, and the latter is actually an infinitude of parameters.
AB - A general theory for two-dimensional vortex interactions is developed from the observation that, under slowly changing external influences, an individual vortex evolves through a series of equilibrium states until such a state proves unstable. Once an unstable equilibrium state is reached, a relatively fast unsteady evolution ensues, typically involving another nearby vortex. During this fast unsteady evolution, a fraction of the original coherent circulation is lost to filamentary debris, and, remarkably, the flow reorganizes into a set of quasi-steady stable vortices. The simplifying feature of the proposed theory is its use of adiabatic steadiness and marginal stability to determine the shapes and separation distance of vortices on the brink of an inelastic interaction. As a result, the parameter space for the inelastic interaction of nearby vortices is greatly reduced. In the case of two vortex patches, which is the focus of the present work, inelastic interactions depend only on a single parameter: the area ratio of the two vortices (taking the vorticity magnitude inside each to be equal). Without invoking adiabatic steadiness and marginal stability, one would have to contend with the additional parameters of vortex separation and shape, and the latter is actually an infinitude of parameters.
UR - http://www.scopus.com/inward/record.url?scp=0029322688&partnerID=8YFLogxK
U2 - 10.1017/S0022112095001716
DO - 10.1017/S0022112095001716
M3 - Article
AN - SCOPUS:0029322688
SN - 0022-1120
VL - 293
SP - 269
EP - 303
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -