A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

Andres Munoz-Jaramillo*, Dibyendu Nandy, Petrus C. H. Martens, Anthony R. Yeates

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

48 Citations (Scopus)

Abstract

The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed alpha-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

Original languageEnglish
Pages (from-to)L20-L25
Number of pages6
JournalAstrophysical Journal Letters
Volume720
Issue number1
DOIs
Publication statusPublished - 1 Sept 2010

Keywords

  • Sun: activity
  • Sun: dynamo
  • Sun: interior
  • OPEN MAGNETIC-FLUX
  • MERIDIONAL FLOW
  • TORSIONAL OSCILLATIONS
  • DIFFERENTIAL ROTATION
  • FIELD
  • CYCLE
  • TACHOCLINE
  • EVOLUTION
  • CIRCULATION
  • CORONA

Fingerprint

Dive into the research topics of 'A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS'. Together they form a unique fingerprint.

Cite this