TY - GEN
T1 - A combined analysis of the cystic fibrosis transmembrane conductance regulator. Implications for structure and disease models.
AU - Chen, JM
AU - Cutler, Christopher Paul
AU - Jacques, C
AU - Denamur, E
AU - Lecointre, G
AU - Boeuf, G
AU - Mercier, B
AU - Cramb, Gordon
AU - Ferec, C
N1 - Mol Biol Evol
PY - 2001/9
Y1 - 2001/9
N2 - Over the past decade, nearly 1,000 variants have been identified in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in classic and atypical cystic fibrosis (CF) patients worldwide, and an enormous wealth of information concerning the structure and function of the protein has also been accumulated. These data, if evaluated together in a sequence comparison of all currently available CFTR homologs, are likely to refine the global structure-function relationship of the protein, which will, in turn, facilitate interpretation of the identified mutations in the gene. Based on such a combined analysis, we had recently defined a "functional R domain" of the CFTR protein. First, presenting two full-length cDNA sequences (termed sCFTR-I and sCFTR-II) from the Atlantic salmon (Salmo salar) and an additional partial coding sequence from the eastern gray kangaroo (Macropus giganteus), this study went further to refine the boundaries of the two nucleotide-binding domains (NBDs) and the COOH-terminal tail (C-tail), wherein NBDI was defined as going from P439 to G646, NBD2 as going from A1225 to E1417, and the C-tail as going from E1418 to L1480. This approach also provided further insights into the differential roles of the two halves of CFTR and highlighted several well-conserved motifs that may be involved in inter- or intramolecular interactions. Moreover, a serious concern that a certain fraction of missense mutations identified in the CFTR gene may not have functional consequences was raised. Finally, phylogenetic analysis of all the full-length CFTR amino acid sequences and an extended set of exon 13-coding nucleotide sequences reinforced the idea that the rabbit may represent a better CF model than the mouse and strengthened the assertion that a long-branch attraction artifact separates the murine rodents from the rabbit and the guinea pig, the other Glires.
AB - Over the past decade, nearly 1,000 variants have been identified in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in classic and atypical cystic fibrosis (CF) patients worldwide, and an enormous wealth of information concerning the structure and function of the protein has also been accumulated. These data, if evaluated together in a sequence comparison of all currently available CFTR homologs, are likely to refine the global structure-function relationship of the protein, which will, in turn, facilitate interpretation of the identified mutations in the gene. Based on such a combined analysis, we had recently defined a "functional R domain" of the CFTR protein. First, presenting two full-length cDNA sequences (termed sCFTR-I and sCFTR-II) from the Atlantic salmon (Salmo salar) and an additional partial coding sequence from the eastern gray kangaroo (Macropus giganteus), this study went further to refine the boundaries of the two nucleotide-binding domains (NBDs) and the COOH-terminal tail (C-tail), wherein NBDI was defined as going from P439 to G646, NBD2 as going from A1225 to E1417, and the C-tail as going from E1418 to L1480. This approach also provided further insights into the differential roles of the two halves of CFTR and highlighted several well-conserved motifs that may be involved in inter- or intramolecular interactions. Moreover, a serious concern that a certain fraction of missense mutations identified in the CFTR gene may not have functional consequences was raised. Finally, phylogenetic analysis of all the full-length CFTR amino acid sequences and an extended set of exon 13-coding nucleotide sequences reinforced the idea that the rabbit may represent a better CF model than the mouse and strengthened the assertion that a long-branch attraction artifact separates the murine rodents from the rabbit and the guinea pig, the other Glires.
KW - cystic fibrosis transmembrane conductance regulator
KW - missense mutation
KW - structure and disease models
KW - phylogeny
KW - Atlantic salmon
KW - rabbit
KW - NUCLEOTIDE-BINDING DOMAINS
KW - CFTR CHLORIDE CHANNEL
KW - ANION-SELECTIVITY
KW - R-DOMAIN
KW - DEVELOPMENTAL EXPRESSION
KW - SEQUENCE-ANALYSIS
KW - ABC TRANSPORTER
KW - GENE
KW - MUTATIONS
KW - IDENTIFICATION
UR - http://www.scopus.com/inward/record.url?scp=0034893723&partnerID=8YFLogxK
M3 - Other contribution
VL - 18
ER -