• KY16 9SS

    United Kingdom

Accepting Postgraduate Research Students

PhD projects

My interests are in algorithms for data science and machine learning. I am particularly interested in graph theory, clustering algorithms, and computational geometry for similarity search.

Personal profile

Profile Keywords

Data Science, Machine Learning, Clustering, Graph Algorithms, Similarity Search, Theoretical Computer Science

Fingerprint

Dive into the research topics where Peter Macgregor is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or
  • Coreset Spectral Clustering

    Jourdan, B., Schwartzman, G., Macgregor, P. & Sun, H., 24 Apr 2025, 13th International Conference on Learning Representations (ICLR'25). 16 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Open Access
  • Fast and simple spectral clustering in theory and practice

    Macgregor, P., 10 Dec 2023, NeurIPS Proceedings - 36th Advances in Neural Information Processing Systems (NeurIPS'23). Oh, A., Naumann, T., Globeron, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Curran Associates, Inc., Vol. 36. p. 34410--34425

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Open Access
  • Dynamic DBSCAN with Euler tour sequences

    Shin, S., Shomorony, I. & Macgregor, P., 2 May 2025, 28th international conference on artificial intelligence and Statistics (AISTATS'25). PMLR, (Proceedings of machine learning research).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Open Access
  • Fast approximation of similarity graphs with kernel density estimation

    Macgregor, P. & Sun, H., 10 Dec 2023, NeurIPS Proceedings - Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Oh, A., Naumann, T., Globeron, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Curran Associates, Inc., Vol. 36. p. 67603-67624 22 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Open Access
  • A tighter analysis of spectral clustering, and beyond

    Macgregor, P. & Sun, H., 28 Jun 2022, Proceedings of the 39th international conference on machine learning. Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G. & Sabato, S. (eds.). PMLR, p. 14717-14742 26 p. (Proceedings of the international conference on machine learning; vol. 162).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Open Access