• KY16 9SS

    United Kingdom

Personal profile

Research overview

Natalia Korolkova is Professor in Theoretical Physics with main interests in theoretical quantum optics and quantum information.

 

The most recent and very promising development is continuous variable (CV) quantum information.  Encoding CV information onto mesoscopic carriers such as the quadratures of light modes or the collective spin of atoms offers several distinct advantages, such as the deterministic generation and manipulation of entangled states of light and atomic ensembles, or the interface between light and atoms allowing the implementation of a quantum memory. This toolbox of available operations has recently been significantly extended which opened access to the realm of non-Gaussian operations, that are essential to several critical applications such as CV entanglement distillation or CV quantum computing.

 

Natalia actively participates in research on different acpects of CV quantum information science. This includes the engineering of non-Gaussian operations on photonic and atomic states exploiting the measurement-induced or actual nonlinearities between light and atoms, CV quantum computing with cat states or cluster states, CV entanglement distillation, multipartite CV entanglement and light-matter interactions. Recently, Natalia got involved in studying the nature and possible application of more general quantum correlations in mixed states, which are beyond entanglement. These correlations are quantified by quantum discord and may change our understanding of what the ultimate quantum resources are. Natalia has strong collaborative links to several European experimental and theory groups and had participated in a number of EU-funded collaborative projects.

 

Within the current EU-funded project, Natalia takes part in development and demonstration of the novel routes towards scaling up physical devices for quantum information science. Communication between different parts of a quantum processor by means of a quantum bus receives particular attention. Developing a scalable technology is pursued by advancing and integrating two successful approaches, solid-state and atom-optical. The new, integrated scheme will be based on the simultaneous exploitation of superconducting qubits for fast and scalable computational tasks and of trapped ions for storage and processing of information with long coherence times. The  long-term vision is an integrated scalable device for quantum information processing.

Research interests

Natalia's current research interests are in the field of quantum information using continuous variables of light and theoretical quantum optics. In particular, she is interested in multipartite CV entanglement, CV computing with cluster states, quantum discord, light-matter interface and other aspects of quantum computing and quantum communication with mesoscopic quantum states of light and atoms.

Academic/Professional Qualification

PhD, Theoretcial Quantum Optics, Moscow State University; Habilitation, Theoretical Quantum Information, University of Erlangen, Germany

Teaching activity

I have taught several undergraduate courses at all Honours levels within the School. My current teaching portfolio includes two 4th-level Honours modules,  Advanced Quantum Mechanics
and Special Relativity and Fields, and the first part (2/3) of the 5th-level Honours module Quantum Optics.  I am also a tutor for the 3rd-level Honours core tutorials in Quantum Mechanics 1. I have served for many years as Juniour Honours Adviser of Studies and Year Coordinator and currently I am the Adviser  of Studies and Year Coordinator for the Seniour Honours cogort. I also have been supervising students for Master projects in Theoretical Physics and for various summer research projects.

Fingerprint

Dive into the research topics where Natalia Korolkova is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or