Personal profile

Research overview

Our research encompasses a range of topics related to animal behaviour and evolution; particularly animal social learning, innovation and intelligence; niche construction, inclusive inheritance, and the extended evolutionary synthesis; and human evolution, cultural evolution, and gene-culture coevolution. We integrate rigorous laboratory experimentation with sophisticated statistical and theoretical approaches, including the development of new methods.

Animal social learning, innovation and intelligence

Animals learn from others selectively, according to functional rules called ‘social learning strategies’. We investigate such strategies through experimental studies in monkeys, birds and fishes, and through evolutionary game theory modelling. We also use experimental studies of animals, including monkeys, birds and fishes, combined with mathematical methods, to determine where animals acquire behaviour through social learning, and how novel traits spread through populations. We conduct comparative statistical analyses exploring the causes of the large primate brain and the evolution of intelligence. We have found that social learning, innovation and tool use all co-vary with primate relative brain size and may have been drivers of brain evolution.

Niche construction, inclusive inheritance and the extended evolutionary synthesis

The activities of organisms can modify selective pressures and affect subsequent evolution. We investigate the effects of this niche construction using comparative phylogenetic methods, theoretical population genetics modelling and through experimental analyses. We are also exploring the evolutionary consequences of extra-genetic forms of inheritance, including cultural inheritance and ecological inheritance, as well as phenotypic plasticity, using experimental and mathematical approaches. The recognition of niche construction as an evolutionary process that imposes biases on selection, as well as important roles for extra-genetic forms of inheritance and of phenotypes (e.g. plasticity-first) in evolution, are central concepts in the emerging extended evolutionary synthesis.

Human evolution, particularly the evolution of cognition

We study the evolution of social learning, teaching, language, cooperation and cumulative culture through a combination of mathematical modelling and experimental research. Our laboratory’s research into the evolution of cognition is summarised in Darwin’s Unfinished Symphony: How Culture Made the Human Mind.

Other expertise

Evolution and human behaviour

Academic/Professional Qualification

Ph.D., Psychology, University College London; B.Sc., Psychology, University of Southampton; Association for the Study of Animal Behaviour; International Society for Behavioural Ecology; International Primatology Society; Primate Society of Great Britain; Fisheries Society of Great Britain

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 2 - Zero Hunger
  • SDG 3 - Good Health and Well-being
  • SDG 5 - Gender Equality
  • SDG 13 - Climate Action
  • SDG 14 - Life Below Water

Fingerprint

Dive into the research topics where Kevin Lala is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or