Data underpinning - Measuring and structuring the spatial coherence length of organic light-emitting diodes

Dataset

Description

The spatial coherence of organic light-emitting diodes (OLEDs) is an important parameter that has gained little attention to date. Here we present a method for making quantitative measurements of the spatial coherence of OLEDs using a Young’s double-slit experiment. The usefulness of the method is demonstrated by making measurements on a range of OLEDs with different emitters (iridium and europium complexes) and architectures (bottom- and top-emitting) and the fringe visibility is further manipulated by gratings embedded in external diffractive optical elements. Based on the experiments and simulation of the results, we quantitatively determine the spatial coherence lengths of several OLEDs and find them to be a few micrometers. A 60% increase in the spatial coherence length was observed when using a narrow bandwidth emitter and a metal-coated grating.
Date made available11 Jan 2016
PublisherUniversity of St Andrews

Cite this